9,643 research outputs found

    Educating a creative engineer: learning from engineering professionals

    Get PDF
    The rapid growth of engineering knowledge has resulted in continuous expansion of novel technologies and materials that can be used in designing new products and processed. Computer- and web-based technologies allowed engineers to significantly shorten the development of novel artefacts. These advances intensified the competition between engineering companies and shortened the lifespans of the majority of engineering products. As a result, practicing engineers are now expected to deliver creative designs to markets much more swiftly than ever before. This paper presents the results of a survey that intended to establish the ways and the means of enhancing engineering creativity that suit the engineering industry of the 21st Century. This study engaged 46 engineering experts from the major international corporations who utilised numerous creativity techniques including TRIZ in their day-to-day engineering work. It had been found that the surveyed engineering experts think that in the current Information age (i) knowledge beyond engineering profession is more important for creativity than the discipline knowledge; (ii) learning creativity methods and problem solving heuristics is more important than acquiring additional discipline knowledge; (iii) the problem solving stage of identifying and understanding a problem is the key to a creative solution

    Eight fields of MATCEMIB help students to generate more ideas

    Get PDF
    This paper presents the results of the idea generation experiment that repeats the study originally conducted at RMIT. In order to establish the influence that the experimental treatments make on the number and the breadth of solution ideas proposed by problem solvers with different knowledge levels, students from different years of study were recruited. Ninety students from the Offenburg University of Applied Sciences, Germany were divided into three groups. All students were asked to generate ideas on cleaning lime deposits from the inside of a water pipe and were given 16 minutes to record their individual ideas. Students of two experimental groups were shown some words for two minuted each. The Su-Field group was exposed to the eight fields of MATCEMIB. The Random Word group was shown eight random words every two minutes. The Su-Field group outperformed both the Control group and the Random Word group in the number of ideas generated. It was also found that the students from the Su-Field group proposed significantly broader solutions than the students from the Control and Random Word groups. The overall results of the experiment support the conclusions made by the RMIT researchers that simple ideation techniques can significantly improve idea generation and that the systematised Substance-Field Analysis is a suitable heuristic for engineering students

    The stability of the O(N) invariant fixed point in three dimensions

    Full text link
    We study the stability of the O(N) fixed point in three dimensions under perturbations of the cubic type. We address this problem in the three cases N=2,3,4N=2,3,4 by using finite size scaling techniques and high precision Monte Carlo simulations. It is well know that there is a critical value 2<Nc<42<N_c<4 below which the O(N) fixed point is stable and above which the cubic fixed point becomes the stable one. While we cannot exclude that Nc<3N_c<3, as recently claimed by Kleinert and collaborators, our analysis strongly suggests that NcN_c coincides with 3.Comment: latex file of 18 pages plus three ps figure

    Weak quenched disorder and criticality: resummation of asymptotic(?) series

    Full text link
    In these lectures, we discuss the influence of weak quenched disorder on the critical behavior in condensed matter and give a brief review of available experimental and theoretical results as well as results of MC simulations of these phenomena. We concentrate on three cases: (i) uncorrelated random-site disorder, (ii) long-range-correlated random-site disorder, and (iii) random anisotropy. Today, the standard analytical description of critical behavior is given by renormalization group results refined by resummation of the perturbation theory series. The convergence properties of the series are unknown for most disordered models. The main object of these lectures is to discuss the peculiarities of the application of resummation techniques to perturbation theory series of disordered models.Comment: Lectures given at the Second International Pamporovo Workshop on Cooperative Phenomena in Condensed Matter (28th July - 7th August 2001, Pamporovo, Bulgaria). 51 pages, 12 figures, 1 style files include

    The stability of a cubic fixed point in three dimensions from the renormalization group

    Full text link
    The global structure of the renormalization-group flows of a model with isotropic and cubic interactions is studied using the massive field theory directly in three dimensions. The four-loop expansions of the \bt-functions are calculated for arbitrary NN. The critical dimensionality Nc=2.89±0.02N_c=2.89 \pm 0.02 and the stability matrix eigenvalues estimates obtained on the basis of the generalized Padeˊ\acute{\rm e}-Borel-Leroy resummation technique are shown to be in a good agreement with those found recently by exploiting the five-loop \ve-expansions.Comment: 18 pages, LaTeX, 5 PostScript figure

    Stability of 3D Cubic Fixed Point in Two-Coupling-Constant \phi^4-Theory

    Full text link
    For an anisotropic euclidean ϕ4\phi^4-theory with two interactions [u (\sum_{i=1^M {\phi}_i^2)^2+v \sum_{i=1}^M \phi_i^4] the β\beta-functions are calculated from five-loop perturbation expansions in d=4εd=4-\varepsilon dimensions, using the knowledge of the large-order behavior and Borel transformations. For ε=1\varepsilon=1, an infrared stable cubic fixed point for M3M \geq 3 is found, implying that the critical exponents in the magnetic phase transition of real crystals are of the cubic universality class. There were previous indications of the stability based either on lower-loop expansions or on less reliable Pad\'{e approximations, but only the evidence presented in this work seems to be sufficently convincing to draw this conclusion.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re250/preprint.htm

    Critical Point Correlation Function for the 2D Random Bond Ising Model

    Full text link
    High accuracy Monte Carlo simulation results for 1024*1024 Ising system with ferromagnetic impurity bonds are presented. Spin-spin correlation function at a critical point is found to be numerically very close to that of a pure system. This is not trivial since a critical temperature for the system with impurities is almost two times lower than pure Ising TcT_c. Finite corrections to the correlation function due to combined action of impurities and finite lattice size are described.Comment: 7 pages, 2 figures after LaTeX fil

    Critical Behaviour of 3D Systems with Long-Range Correlated Quenched Defects

    Full text link
    A field-theoretic description of the critical behaviour of systems with quenched defects obeying a power law correlations xa\sim |{\bf x}|^{-a} for large separations x{\bf x} is given. Directly for three-dimensional systems and different values of correlation parameter 2a32\leq a \leq 3 a renormalization analysis of scaling function in the two-loop approximation is carried out, and the fixed points corresponding to stability of the various types of critical behaviour are identified. The obtained results essentially differ from results evaluated by double ϵ,δ\epsilon, \delta - expansion. The critical exponents in the two-loop approximation are calculated with the use of the Pade-Borel summation technique.Comment: Submitted to J. Phys. A, Letter to Editor 9 pages, 4 figure

    The AGASA/SUGAR Anisotropies and TeV Gamma Rays from the Galactic Center: A Possible Signature of Extremely High-energy Neutrons

    Get PDF
    Recent analysis of data sets from two extensive air shower cosmic ray detectors shows tantalizing evidence of an anisotropic overabundance of cosmic rays towards the Galactic Center (GC) that ``turns on'' around 101810^{18} eV. We demonstrate that the anisotropy could be due to neutrons created at the Galactic Center through charge-exchange in proton-proton collisions, where the incident, high energy protons obey an E2\sim E^{-2} power law associated with acceleration at a strong shock. We show that the normalization supplied by the gamma-ray signal from EGRET GC source 3EG J1746-2851 -- ascribed to pp induced neutral pion decay at GeV energies -- together with a very reasonable spectral index of 2.2, predicts a neutron flux at 1018\sim 10^{18} eV fully consistent with the extremely high energy cosmic ray data. Likewise, the normalization supplied by the very recent GC data from the HESS air-Cerenkov telescope at \~TeV energies is almost equally-well compatible with the 1018\sim 10^{18} eV cosmic ray data. Interestingly, however, the EGRET and HESS data appear to be themselves incompatible. We consider the implications of this discrepancy. We discuss why the Galactic Center environment can allow diffusive shock acceleration at strong shocks up to energies approaching the ankle in the cosmic ray spectrum. Finally, we argue that the shock acceleration may be occuring in the shell of Sagittarius A East, an unusual supernova remnant located very close to the Galactic Center. If this connection between the anisotropy and Sagittarius A East could be firmly established it would be the first direct evidence for a particular Galactic source of cosmic rays up to energies near the ankle.Comment: 57 pages, 2 figure
    corecore